团队愿景(Vision)
本研究组利用深度学习与人工智能算法结合单细胞等测序技术数据,致力于对细胞的数字化建模和分析,揭示细胞的功能复杂性与异常机制。研究重点是从单个细胞中提取多组学多模态生物信息,构建细胞的计算模型。研究内容包括:细胞类型的鉴定和分类、基因调控网络的建模和分析、细胞发育和分化的机制研究、生物进化和适应的机制研究、复杂疾病(癌症)的机制研究等。
团队组成 (Members)
PI:陈向 博士
研究生:21级余俊楠,22级马永康,23级刘小宇,23级杨子涵
本科生:21级聂艺洋(保研河海大学),21级曾家伟(考研湖南科技大学),21级曾嘉诚(考研湖南科技大学)
欢迎👏未来的你加入本研究组!如果有意,请发送邮件到 chenxofhit[at]gmail[dot]com 介绍自己的基本情况、优势以及对未来工作的展望。
团队新闻 (News)
1,热烈祝贺本组的科研论文被 CCF B 类国际会议 IEEE BIBM 2023 接收!报道:https://chenxofhit.xyz/posts/scgcnclustering/
2,热烈祝贺本组本科生曾家伟毕业设计“基于 Transformer 模型的细胞类型注释方法研究”获湖南科技大学优秀本科生毕业设计二等奖!
3,热烈祝贺本组的科研论文被 CCF B 类国际会议 IEEE BIBM 2024 接收!报道:https://chenxofhit.xyz/posts/stgclf/
团队成果
Conferences-会议论文
-
[C] Xiang Chen, Junnan Yu, and Min Li. stGCLF: a versatile deep graph contrastive learning framework for spatial transcriptomics analysis. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Lisbon, Portugal, 2024. (待发表,CCF B 类国际会议)
-
[C] Xiang Chen, Junnan Yu, Li Peng, and Min Li. A deep graph convolution network with attention for clustering scRNA-seq data. In 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkiye, 2023 pp. 320-323. doi: 10.1109/BIBM58861.2023.10385323. (CCF B 类国际会议) Cite
-
[C] Shuai Zhang, Xiang Chen, Li Peng. scIAMC:Single-Cell Imputation via adaptive matrix completion. IEEE EdgeCom 2023.
-
[C] Tao Huang, Xiang Chen, Li Peng. ESR:Optimizing Gene Feature Selection for scRNA-seq data. IEEE CSCloud 2023.
-
[C] Xiang Chen, Fang-Xiang Wu, Jin Chen, and Min Li. DoRC: Discovery of rare cells from ultra-large scRNA-seq data. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 2019, pp. 111-116, doi: 10.1109/BIBM47256.2019.8983250. ( CCF B 类国际会议)
-
[C] Xiang Chen, Wei Bu, Xiangqian Wu, et al. “A novel method for automatic hard exudates detection in color retinal images[C]”//Machine Learning and Cybernetics (ICMLC), 2012 International Conference on. IEEE, 2012, 3:1175-1181. (EI)
Journals-期刊论文
- [J] Li Peng , Yuan Tu , Li Huang , Yang Li , Xiangzheng Fu , and Xiang Chen. DAESTB: Inferring associations of small molecule-miRNA via a scalable tree boosting model based on deep autoencoder.Briefings in Bioinformatics. 2022. (SCI IF=11, JCR 1 区) Cite
- [J] Li Peng, Cheng Yang , Li Huang , Xiang Chen, Xiangzheng Fu and Wei Liu. RNMFLP:Predicting circRNA-disease associations based on robust non-negative matrix factorization and label propagation. Briefings in Bioinformatics. 2022. (CA, SCI IF=11, JCR 1 区) Cite
- [J]Xiang Chen, Min Li, Ruiqing Zheng, Siyu Zhao, Fang-Xiang Wu, Yaohang Li, and Jianxin Wang. A novel method of gene regulatory network structure inference from gene knock-out expression data. Tsinghua Science and Technology 24, no. 4 (2019): 446-455. (SCI IF=2.3, JCR 2区 )
- [J] Xiang Chen, Min Li, Ruiqing Zheng, Fang-Xiang Wu, and Jianxin Wang. D3GRN: a data driven dynamic network construction method to infer gene regulatory networks. BMC genomics 20, no. 13 (2019): 1-8. (SCI IF=3.5, JCR 1 区)
- [J] Ruiqing Zheng, Min Li, Xiang Chen, Fang-Xiang Wu, Yi Pan, and Jianxin Wang. BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene regulatory networks. Bioinformatics 35, no. 11 (2019): 1893-1900. (SCI IF=5.6, JCR 1 区)
- [J] Ruiqing Zheng, Min Li, Xiang Chen, Siyu Zhao, Fang-Xiang Wu, Yi Pan, Jianxin Wang. An ensemble method to reconstruct gene regulatory networks based on multivariate adaptive regression splines. IEEE/ACM Transactions on Computational Biology and Bioinformatics. doi: 10.1109/TCBB.2019.2900614. (SCI IF=0.9, JCR 1 区)
- [J] Ruiqing Zheng, Zhenlan Liang, Xiang Chen, Yu Tian, Min Li. An Adaptive Sparse Subspace Clustering for Cell Type Identification. Frontiers in Genetics. doi: 10.3389/fgene.2020.00407.(SCI IF=3.2, JCR 1 区)
- [J] Hui Jiang, Mengyun Yang, Xiang Chen, Min Li, Yaohang Li, and Jianxin Wang. miRTMC: A miRNA Target Prediction Method Based on Matrix Completion Algorithm[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS.2020, DOI:10.1109/JBHI.2020.2987034. (SCI IF=5.1, JCR 1 区)
- [J] Min Li, Jianxin Wang, Xiang Chen, et al. “A local average connectivity-based method for identifying essential proteins from the network level[J]”. Computational biology and chemistry, 2011, 35(3): 143-150. (SCI)
- [J] Wei Bu, Xiangqian Wu, Xiang Chen, et al. “Hierarchical Detection of Hard Exudates in Color Retinal Images[J]”. JSW, 2013, 8(11): 2723-2732. (EI)
最后更新:2024-8-5